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Abstract—Intrusion Detection Systems (IDSs) play a crucial
role in securing Internet of Things (IoT) networks, which
are increasingly exposed to sophisticated cyber threats. This
paper presents an adaptive, reconstruction-based IDS leveraging
multiple class-specific Long Short-Term Memory Autoencoders
(LSTM-AEs), each trained on a single traffic class (Normal,
DDoS-HTTP, DDoS-TCP, DDoS-ICMP). Unlike conventional
anomaly detection that models only normal traffic, our approach
performs multi-class classification by comparing reconstruction
errors across all class-specific models. Evaluated on the
Edge-IIoTset dataset, the method achieved a macro-averaged
F1-score of 0.9963, underscoring the suitability of LSTM-AE
architectures for fine-grained, threat-specific detection in realistic
IoT environments.

Index Terms—IoT Security, Anomaly detection, Optuna, Deep
Learning, LSTM Autoencoder, Edge-IIoTset.

I. INTRODUCTION

The rapid expansion of internet-connected devices across
households, industry, and smart infrastructure has significantly
increased the cyber threat landscape. Securing Internet of
Things (IoT) networks is critical to safeguard sensitive data,
ensure operational continuity, and protect public safety [1].
While IoT offers tremendous benefits through automation
and efficiency, it also introduces vulnerabilities due to
the heterogeneity, limited computational capacity, and often
inadequate security of connected devices [2]. Traditional
perimeter-based defences are increasingly insufficient in such
dynamic environments.

Intrusion Detection Systems (IDSs) have emerged as key
components of modern cybersecurity architectures, monitoring
network traffic and system behaviour to detect malicious
activity. However, conventional IDSs, particularly those
relying on signature-based methods or static machine learning
models, often suffer from high false-positive rates, poor
generalisation, and limited capacity to detect zero-day or
behaviourally similar attacks [3], [4]. To address these

limitations, recent studies have explored Deep Learning (DL)
techniques that can learn complex attack patterns directly from
network traffic data [5], [6].

Architectures such as Convolutional Neural Networks
(CNNs), Long Short-Term Memory (LSTM) networks, and
Gated Recurrent Units (GRUs) offer improved spatial and
temporal dependencies in network traffic [7], [8]. LSTMs,
in particular, are well-suited to sequential traffic analysis.
While GRUs offer a computationally efficient alternative, and
CNNs excel at detecting localised spatial features. Traditional
machine learning models such as Random Forest (RF),
Support Vector Machine (SVM), and K-Nearest Neighbors
(KNN) remain useful for baseline comparisons due to their
interpretability and robustness.

In this study, we propose a deep intrusion detection
system using multiple LSTM autoencoders trained on separate
traffic classes rather than a single normal-only model.
This class-conditional training strategy enables fine-grained
detection of high-impact volumetric threats, specifically
DDoS-HTTP, DDoS-TCP, and DDoS-ICMP, as well as
normal traffic. By classifying inputs based on the lowest
reconstruction error among all trained autoencoders, the
framework supports multi-class anomaly detection and
demonstrates improved discrimination between similar attack
patterns compared to traditional binary anomaly detection or
static supervised classifiers. The LSTM autoencoder model is
optimised through Bayesian hyperparameter tuning using the
Optuna framework and is benchmarked against a Dense Neural
Network (DNN) baseline.
The key contributions of this paper are as follows:

• Preprocessing pipeline: We design a reproducible
pipeline that balances classes, extracts temporal and
structural features (e.g., inter-arrival deltas, cyclic time),
and standardizes inputs for sequential modeling.
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• Class-conditional LSTM-AEs: We train separate LSTM
autoencoders for each traffic class (Normal, DDoS-HTTP,
DDoS-TCP, DDoS-ICMP), enabling multi-class detection
via reconstruction error comparison rather than a single
normal-only model.

• Hyperparameter optimization: Using Optuna, we tune
latent size, window length, and thresholds per class to
enhance detection accuracy and robustness.

• Evaluation on Edge-IIoTset: Our approach surpasses
a DNN baseline and classical ML models, achieving
a macro-averaged F1-score of 0.9963 with fine-grained
DDoS detection.

The remainder of this paper is structured as follows.
Section II provides an overview of related work on
anomaly-based intrusion detection systems. Section III details
the proposed system architecture, preprocessing pipeline, and
model training strategy. Section IV presents the experimental
setup, performance metrics, and comparative results. Finally,
Section V concludes the paper and outlines directions for
future research.

II. RELATED WORK

As IoT deployments scale across critical infrastructure,
anomaly-based Intrusion Detection Systems (IDSs) are gaining
increased attention for their ability to detect novel and
evolving threats. Traditional IDSs, particularly signature-based
or rule-driven models, often struggle with generalisation
and adaptability in dynamic IoT environments [3], [5]. To
overcome these limitations, Deep Learning (DL) methods,
especially recurrent architectures such as Long Short-Term
Memory (LSTM) networks, have been explored due to their
strengths in temporal pattern recognition within network
traffic [6]. This architecture was originally introduced to
address these shortcomings due to its strength in modelling
temporal patterns in sequential traffic data [9].

LSTM networks are particularly suitable for detecting
IoT-based attacks that exhibit time-dependent behaviour. For
example, Thant et al. [7] proposed an LSTM-based IDS for
IoT networks, demonstrating improved accuracy in detecting
temporal attacks such as DDoS and slow-rate floods. Similarly,
Vinayakumar et al. [10] showed that LSTM and Deep
Neural Networks (DNNs) outperform traditional classifiers
in modelling sequential traffic behaviour, particularly in
multi-class intrusion detection scenarios. Popoola et al. [11]
proposed a multi-stage hybrid deep learning framework,
which achieved improved performance on multi-class intrusion
detection in IoT networks.

In addition to single-architecture models, hybrid deep
learning approaches have gained increasing attention. Wang
et al. [12] proposed a CNN–GRU model with XGBoost-based
feature selection, achieving strong results on BoT-IoT and
UNSW-NB15 datasets. Kilichev et al. [13] applied a
CNN–LSTM–GRU ensemble to detect anomalies in Electric
Vehicle Charging Stations using the Edge-IIoTset dataset.
However, they did not isolate high-impact attack classes, or
optimise class-wise detection. Their methodology highlights

the utility of Edge-IIoTset in realistic IIoT use cases.
Qazi et al. [14] proposed a one-dimensional CNN-based
intrusion detection system, achieving high accuracy on the
CICIDS2017 dataset with reduced computational complexity
and minimal preprocessing. Altangerel et al. [15] developed a
one-dimensional CNN model for anomaly detection in IoT
networks, demonstrating strong performance in constrained
environments using custom network traffic features.

Shone et al. [16] introduced a deep autoencoder-based
IDS capable of learning hierarchical representations from
raw network data, reducing the need for manual feature
engineering. Javaid et al. [17] introduced an autoencoder-based
intrusion detection system trained on normal traffic patterns,
highlighting the effectiveness of deep unsupervised learning in
distinguishing anomalies from legitimate behaviour. Mohamed
et al. [18] provided a comprehensive review of deep learning
techniques for intrusion detection in IoT and IIoT systems,
covering hybrid model of CNN and LSTM autoencoders,
and discussing their strengths in real-world operational
deployments.

However, while many of these works demonstrate
strong results in multi-class intrusion detection, they often
overlook evaluation across high-impact IoT attack types.
Additionally, aspects such as per-class performance analysis,
targeted feature selection, and real-time feasibility remain
underexplored. Our work differs in its targeted feature
engineering, use of balanced class distributions, and evaluation
on high-impact volumetric DDoS attacks using class-specific
autoencoders. This design addresses key gaps in the
literature regarding class-level granularity, adaptive anomaly
thresholds, and model interpretability for realistic IoT security
applications.

III. METHODOLOGY

This section outlines the methodology adopted to design,
implement, and evaluate an LSTM autoencoder-based
anomaly detection system for IoT networks. The proposed
pipeline includes dataset selection, feature engineering, class
rebalancing, model architecture design, and hyperparameter
optimisation using the Optuna framework.

A. Attacks covered

This paper focuses on four traffic classes drawn
from the Edge-IIoTset dataset: DDoS HTTP, DDoS TCP,
DDoS ICMP, and Normal Traffic. This selection is informed
by a recent report of ENISA Threat Landscape 2024
report [19], which identifies DDoS attacks as significant
threats to interconnected systems and operational technologies.
Each selected attack type is described below to highlight
its operational characteristics and relevance to IoT threat
detection.

DDoS HTTP (Layer 7): These application-layer attacks
involve large volumes of HTTP GET or POST requests that
appear normal but aim to exhaust web server resources such
as CPU, memory, and thread pools. Tools such as Slowloris
exploit this vector by sending incomplete or slow headers
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Fig. 1. Class distribution in the Edge-IIoT dataset (DNN File).

to keep connections open indefinitely, often avoiding basic
filtering due to their low-rate, fragmented traffic profiles.

DDoS TCP (Layer 4): This attack floods servers with
spoofed SYN packets during the TCP handshake, causing
the server to allocate resources for connections that never
complete. The resulting backlog of half-open connections
leads to resource exhaustion. Stateful TCP processing makes
such attacks especially difficult to mitigate

DDoS ICMP (Layer 3): These network-layer attacks,
including ping floods and Smurf attacks, overwhelm network
infrastructure with Echo Requests. Smurf attacks use spoofed
IP addresses and broadcast amplification to magnify their
impact. The stateless nature of ICMP complicates mitigation,
particularly on legacy devices lacking modern traffic controls.

Normal Traffic: Benign traffic collected under operational
conditions is included to represent baseline behaviour across
typical IIoT protocols.

B. Dataset Description

This study employs the Edge-IIoTset dataset [20], a publicly
available benchmark specifically designed for intrusion
detection in Industrial IoT (IIoT) environments. The dataset
comprises over 2 million labeled network records, collected
from simulated IIoT scenarios with three main directories:
normal traffic, attack traffic, and a preselected subset for
machine learning and deep learning tasks. It includes 15 attack
types and multiple IIoT-specific communication protocols such
as Modbus/TCP (MBTCP) and MQTT, which are widely used
in manufacturing, energy, and smart infrastructure. Table I lists
its attributes and metadata.

Our experiments utilise the preprocessed file
DNN-EdgeIIoT-dataset.csv, which is part of the

dataset’s machine learning-ready subset. This file contains
flow-level features derived from diverse traffic sessions.
Protocol-specific features such as mbtcp.len, mqtt.msg,
and tcp.flags are included alongside statistical indicators
and temporal metadata, enabling both tabular and sequential
learning.

For this study, we focus on a four-class setting involving
Normal traffic and three volumetric attack types: DDoS
HTTP, DDoS TCP, and DDoS ICMP. The DDoS UDP
class was excluded due to missing timestamp values in the
frame.time and udp.time_delta fields, which resulted
in schema misalignment, as summarised in Table I. This subset
was selected to reflect high-impact threats and enable the
application of temporal sequence models.

C. Preprocessing Pipeline

The preprocessing pipeline transforms raw traffic data
into structured sequences suitable for temporal modelling
with LSTM autoencoders. It consists of several key stages,
including data cleaning, stratified data splitting, temporal
and structural feature engineering, categorical encoding, and
feature scaling. These steps collectively ensure that the input
data is normalised, balanced, and temporally consistent, which
is essential for effective anomaly detection in sequential traffic
patterns.
Data Cleaning. The dataset was filtered to include
four relevant traffic classes: DDoS HTTP, DDoS TCP,
DDoS ICMP, and Normal. These were selected to align
with the study’s focus on prevalent volumetric attacks and
representative normal traffic. No missing values were detected
in the filtered data. Duplicate entries were removed to reduce
redundancy and prevent biased learning. Continuous fields
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TABLE I
SUMMARY OF EDGE-IIOTSET DATASET CHARACTERISTICS

Attribute Description

Granularity Flow-level data with timestamped records capturing detailed network activity.
Size (samples/flows) ∼2.2 million labeled records.
Features 63 features: protocol-level (TCP, UDP, MQTT, HTTP, DNS, ICMP), statistical indicators, temporal metrics.
Volume (Time Span) Multi-day traffic emulation reflecting realistic IIoT operations.
Attack Taxonomy 14 attack types across 5 categories: DDoS, Injection, Scanning, MITM, Malware.
Representation Suitable for classical ML and deep learning; supports tabular and sequence models.
Class Distribution Imbalanced; includes rare attacks (e.g., MITM attack, Fingerprinting attack).
License Open academic license via IEEE DataPort.
Data Collection Method Simulated IIoT network with protocol/device-level emulation.
Temporal Splits Timestamped data supports sequence modelling (Except DDoS_UDP attack).
Relevance & Currency Released in 2023 and aligned with modern IIoT threats and system design.
Labeled Fully labeled with ground truth annotations; includes two columns: Attack_label and Attack_type,

enabling both binary and multi-class classification.
Issues Identified DDoS_UDP attack entries lack values in the frame.time (a.k.a. timestamp) field with 0 values all over the

udp.time_delta feature, resulting in column misalignment or schema shift during parsing. According to our
analysis, each subsequent field is offset by one column, displacing the true values.

Feature Scaling Data Encoding Feature Engineering

Model Training Trained Model Evaluation

Train 80%

Te
st

 2
0
%

Data Preparation

Apply on Train only

Model preparation, training and testing

Data Cleaning, filtering and sampling  Train/Test Split Per ClassEdge-IIoT Dataset (DNN)

Fig. 2. Data preprocessing, training, and evaluation pipeline.

TABLE II
HYPERPARAMETERS USED IN THE LSTM AUTOENCODER EXPERIMENTS:

OPTUNA-OPTIMIZED (UPPER PART) AND FIXED EXPERIMENTAL
PARAMETERS (LOWER PART)

Parameter Value

Optuna-Optimized Parameters

Window length (W ) 5–20 timesteps (chosen: 10)
Latent dimension 8–64 (chosen: 20)
Batch size 64, 128, 256, 512 (chosen: 256)
Epochs 10–50 (chosen: 30)
Learning rate 10−4 – 10−2 (chosen: 10−3)
Threshold percentile 95–99.9% (chosen: 99%)

Fixed Experimental Parameters

Normal samples (Nnormal) 200,000
Attack samples (Nattack) 49,000 per class
Train/test split 80% / 20%
Random seed 42

were retained in numeric format, while non-numeric fields
were identified for encoding in subsequent stages.
Data Splitting. An 80/20 stratified split was applied to divide
the dataset into training and test subsets, maintaining class

TABLE III
CLASS SIZES BEFORE AND AFTER BALANCING

Class Before Balancing After Balancing

Normal 1,615,643 200,000
DDoS HTTP 49,911 49,000
DDoS TCP 50,062 49,000
DDoS ICMP 116,436 49,000

balance across both partitions. Importantly, the split was
performed prior to the generation of temporal windows to
prevent information leakage between training and evaluation
data. A fixed random seed (42) was used to ensure
experimental reproducibility.
Feature Engineering. In contrast to the dataset creators’
default recommendations [21], this study introduces
additional temporal and structural features to enhance model
performance. Arrival timestamps were used to calculate
inter-arrival time deltas, which help capture changes in packet
rates. Timestamps were also encoded as cyclical variables
using sine and cosine transformations of time-of-day to retain
periodic behavioural patterns while avoiding discontinuities.
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IP addresses were transformed into 32-bit integers by
concatenating binary-encoded octets, producing compact,
model-compatible numerical representations that preserve
uniqueness without implying ordinal relationships. These
engineered features were combined with raw packet attributes
to form the complete feature set.

• Timeframe Engineering. Timestamps were parsed,
converted to nanoseconds, and sorted chronologically.
Inter-arrival time deltas were computed, and daily
periodicity was captured using sine and cosine encodings
of time-of-day (see Eqs. 1–5). All temporal features were
standardised using statistics from the training set only.

ti = timestamp of frame i in seconds (1)

∆ti = ti − ti−1, ∆t0 = 0 (2)

secsi = ti mod 86400 (3)

tod sini = sin

(
2π · secsi
86400

)
(4)

tod cosi = cos

(
2π · secsi
86400

)
(5)

x′ =
x− µx

σx
(z-score normalisation) (6)

• IP Address Engineering. IPv4 addresses were
transformed from dotted-decimal format into 32-bit
integers by concatenating binary-encoded octets. For
example, 192.168.0.128 becomes:

11000000 10101000 00000000 10000000 → 3232235648

This representation reduces dimensionality and ensures
compatibility with numerical models, without implying
ordinal relationships.

Data Encoding. Categorical features such as ip.src_host,
ip.dst_host, http.request.method, and
tcp.flags were encoded using label encoding. Each
unique value was assigned an integer label, thereby avoiding
the feature space explosion associated with one-hot encoding,
particularly problematic in high-cardinality fields such as IP
addresses and protocol flags. Encoded categorical features
were merged with numerical attributes (e.g., tcp.len,
icmp.seq_le) into a single feature matrix for scaling and
modelling.
Feature Scaling. All numerical features were standardised
using z-score normalisation with the StandardScaler
from Scikit-learn. Scaling parameters (mean and standard
deviation) were computed exclusively on the training set and
subsequently applied to the test set to avoid data leakage.
Standardisation to zero mean and unit variance ensured
numerical stability during training and helped balance feature
influence in the LSTM model, which is sensitive to input
magnitudes.

D. Model Architecture

The proposed intrusion detection framework employs a
class-conditional LSTM autoencoder to model the temporal
dynamics of multivariate IoT traffic. The model is designed
to learn a compact representation of normal and attack-class
traffic patterns and to detect anomalies based on reconstruction
errors.

Each input instance is represented as a sequence of W
time steps, where each step contains a standardised feature
vector. The architecture follows a symmetric encoder–decoder
structure implemented using the Keras deep learning library.

The encoder contains a single LSTM layer with d hidden
units, which processes the input sequence and encodes it into
a fixed-length latent vector, as expressed in Eq. 7:

ht = LSTMenc(xt, ht−1), z = hT (7)

where xt is the input feature vector at time step t, ht is
the hidden state produced by the encoder LSTM at that step,
and z = hT represents the final latent vector summarizing the
entire input sequence.

This representation is then passed to a RepeatVector
layer, which replicates the latent vector across W time steps
to initialise the decoder input.

The decoder includes a second LSTM layer that attempts
to reconstruct the original input sequence from the latent
representation, following Eq. 8:

x̂t = LSTMdec(z, ht−1) (8)

where x̂t is the reconstructed feature vector at time step t,
generated by the decoder LSTM using the latent vector z and
the previous hidden state ht−1.

The output of the decoder is passed through a Time
Distributed dense layer to produce a sequence of reconstructed
feature vectors with the same dimensionality as the input.

The model is trained using the Adam optimiser and the
Mean Squared Error (MSE) loss function, defined as:

MSE =
1

N

N∑
i=1

(xi − x̂i)
2 (9)

where xi and x̂i denote the original and reconstructed
feature vectors at time step i, and N is the number of time
steps in the sequence.

During inference, each class-specific autoencoder computes
a reconstruction error for a given input sequence. Let x̂i,c

denote the reconstructed vector produced by the autoencoder
trained on class c. The per-class reconstruction error is
computed as:

Ec =
1

N

N∑
i=1

(xi − x̂i,c)
2 (10)

where x̂i,c is the reconstruction from the autoencoder
of class c. The predicted class is the one associated with
the autoencoder yielding the lowest reconstruction error,
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provided that the error is below a class-specific threshold.
These thresholds are determined using percentile-based tuning
via the Optuna framework. This strategy enables effective
discrimination among multiple traffic classes based on
reconstruction confidence.

E. Training Strategy

Each LSTM autoencoder was trained independently on
a single traffic class to learn its temporal behaviour.
The objective was to minimise the reconstruction error of
class-specific input sequences using the Adam optimiser and
the Mean Squared Error (MSE) loss function defined in
Eq. 9. This class-conditional training scheme enables each
autoencoder to specialise in reconstructing patterns unique to
its corresponding class.

To optimise model performance, key hyperparameters,
including latent dimension size, window length, learning
rate, batch size, and reconstruction error threshold percentile,
were tuned using the Optuna framework. The macro-averaged
F1-score on a validation split of the training data served as the
objective metric during tuning. Optuna’s pruning mechanism
was used to terminate underperforming trials early, thereby
accelerating the optimisation process.

Training was conducted for up to 30 epochs with
early stopping, using a fixed random seed (42) to ensure
reproducibility. Because class balancing was applied during
preprocessing, no additional class weighting was needed
during training.

Each of the four autoencoders is trained exclusively on data
from a single class. At inference, all four models compute
reconstruction errors as described in Eq. 10, and classification
is based on the lowest error among them rather than a binary
anomaly vs. normal decision. The class corresponding to the
model with the lowest error is assigned as the predicted label,
provided the error is below a threshold determined via Optuna
tuning, as expressed in Eq. 11:

ĉ = argmin
c

{Sc(x)}, Sc(x) < τc (11)

Sequences that exceed all class-specific thresholds can
optionally be flagged as anomalous or rejected, depending on
the deployment context.

F. Threat Model Assumptions

The proposed system assumes a passive, external attacker
model in which adversaries can observe and inject malicious
network traffic into the IoT environment but do not possess
control over internal system components or endpoint devices.
This reflects common threat scenarios in which industrial IoT
networks are exposed to volumetric flooding attacks or stealthy
intrusion attempts via unsecured network interfaces.

Specifically, the study targets high-impact distributed
denial-of-service (DDoS) attack types, such as HTTP floods,
TCP SYN floods, and ICMP amplification attacks, which
aim to exhaust network or application-layer resources through
abnormal traffic patterns. These are assumed to be mounted

by remote adversaries leveraging spoofed IP addresses,
low-and-slow tactics, or protocol misuse.

The threat model excludes scenarios involving compromised
IoT nodes, insider threats, or adversaries with privileged
access to the infrastructure. Additionally, adversarial machine
learning (e.g., evasion or poisoning attacks) is considered out
of scope for this work. These limitations reflect a practical
focus on early-stage intrusion detection within constrained
industrial and edge environments.

This threat model supports the design of an IDS
that operates on flow-level features and sequence data
without relying on encrypted payload inspection or host-level
instrumentation.

G. Optuna Framework

Optuna [22], a Bayesian optimisation framework for
automated hyperparameter tuning and early stopping, was
employed to optimise the performance of the LSTM
autoencoder. The search space included encoder latent
dimensions (8–64), batch sizes (64, 128, 256, 512),
training window lengths (5–20 timesteps), training epochs
(10–50), Adam optimiser learning rates (10−4–10−2), and
reconstruction-error percentile thresholds (95–99.9%).

The optimisation objective was to maximise the
macro-averaged F1-score over the hyperparameter search
space, formulated in Eq. 12:

max
θ∈Θ

F1macro(θ) (12)

where θ represents hyperparameters (latent dimension,
learning rate, window size, threshold percentile). The objective
function was evaluated on a stratified validation split of the
training set, and Optuna’s pruning mechanism dynamically
terminated underperforming trials based on intermediate
evaluation results, thereby accelerating convergence.

This tuning procedure yielded class-specific hyperparameter
configurations that effectively balanced detection accuracy,
computational efficiency, and generalisability across
heterogeneous traffic patterns.

IV. EVALUATION AND EXPERIMENTS

The evaluation focuses on four representative classes:
Normal, DDoS-HTTP, DDoS-TCP, and DDoS-ICMP, which
were selected based on their prevalence and severity in current
IoT threat landscapes as discussed in III-A.

Performance was assessed using standard multi-class
classification metrics: Accuracy, Precision (Eq. 14), Recall
(Eq. 15), F1-score (Eq. 16), computed using macro-averaging
(Eq. 13) to account for class imbalance.

F1macro =
1

C

C∑
c=1

2 · Pc ·Rc

Pc +Rc
(13)

Precisionc =
TPc

TPc + FPc
(14)

Recallc =
TPc

TPc + FNc
(15)
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TABLE IV
PER-CLASS PERFORMANCE METRICS OF THE LSTM AUTOENCODER

MODEL: BEST VALUES IN EACH COLUMN ARE HIGHLIGHTED

Class Precision Recall F1-Score

Normal 0.9993 0.9999 0.9996
DDoS ICMP 0.9996 0.9908 0.9952
DDoS TCP 0.9999 0.9868 0.9933
DDoS HTTP 0.9945 0.9997 0.9971

Macro Avg 0.9983 0.9943 0.9963
Weighted Avg 0.9967 0.9967 0.9967

F1c =
2 · Precisionc · Recallc
Precisionc + Recallc

(16)

A. Comparison with Edge-IIoTset Benchmarks

Ferrag et al. [20] reported baseline results on the Edge-IIoT
dataset using a variety of classical and deep learning models,
including decision trees, random forests, support vector
machines, k-nearest neighbours, and deep neural networks.
Among these, the deep neural network achieved the best
performance, reaching an F1-score of approximately 0.95 in
their six-class classification setting.

In contrast, the proposed LSTM autoencoder, evaluated
in a four-class setting, achieved an overall accuracy of
99.67% and a macro-averaged F1-score of 0.9963. As shown
in Table IV, class-wise F1-scores exceeded 0.993 for all
attack types and reached 0.999 for Normal traffic. These
results represent a relative improvement of 4-5 percentage
points over the strongest DNN baseline, underscoring the
advantages of sequence-aware reconstruction-based modelling
for high-volume attack detection in IoT networks.

B. Confusion Matrix Analysis

Fig. 3 shows the confusion matrix for the LSTM
autoencoder model. Misclassifications were minimal across all
classes. The model classified both Normal and DDoS HTTP
traffic with near-perfect accuracy, while DDoS TCP and
DDoS ICMP yielded false negative rates below 0.5%.

This low level of inter-confusion demonstrates that
combining class-conditional reconstruction with temporal
feature encoding enables the model to distinguish subtle
behavioural differences DDoS variants. In contrast, baseline
classifiers reported by Ferrag et al. [20] struggled to
achieve such fine-grained discrimination. The consistently high
precision and recall across all classes confirm the robustness
and reliability of the proposed framework for volumetric
intrusion detection in IoT environments.

V. CONCLUSION

This study introduces a multi-class intrusion detection
system for Internet of Things networks. The method uses
class-specific LSTM autoencoders trained on segmented traffic
sequences to learn the behavior of each traffic class. It targets
three volumetric attack types: DDoS-HTTP, DDoS-TCP, and
DDoS-ICMP, along with normal traffic. These cases were

Fig. 3. Confusion matrix for the evaluated model.

selected from the Edge-IIoTset dataset to reflect common and
severe IoT threats.

Preprocessing included class balancing, timestamp-based
features such as inter-arrival intervals and cyclic time
encoding, IP address transformation, categorical encoding, and
z-score normalization. Traffic data was divided into windows
to keep temporal dependencies intact. Hyperparameters
including latent size, window length, learning rate, and
reconstruction thresholds were tuned with the Optuna
framework, which pruned unpromising trials to reduce training
time.

The LSTM autoencoder reached near-perfect Precision,
Recall, and F1-score, surpassing benchmarks from decision
trees, random forests, SVM, KNN, and deep neural networks
tested on Edge-IIoTset.

Future work will aim to deploy the model on low-power
edge devices by reducing complexity and inference delay.
The study also plans to expand the threat model to
include insider and adversarial attacks such as poisoning and
evasion, exploring architectures like transformers and adaptive
sequence models to improve resilience.
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TABLE V
PERFORMANCE COMPARISON OF PROPOSED LSTM AUTOENCODER AND EDGE-IIOTSET BASELINES FOR NORMAL AND DDOS TRAFFIC DETECTION

(PR: PRECISION, RC: RECALL, F1: F1-SCORE)

2*Model 2*Traffic Type Metrics (Pr / Rc / F1) F1 Gain vs. Baselines

Normal DDoS Macro Avg DT RF DNN

Proposed (LSTM-AE) Combined 0.9993 / 0.9999 / 0.9996 0.9945 / 0.9997 / 0.9971 0.9983 +0.1871 +0.0971 +0.0471

DT Combined 1.00 / 1.00 / 1.00 0.73 / 0.92 / 0.81 0.905 – – –
RF Combined 1.00 / 1.00 / 1.00 0.98 / 0.83 / 0.90 0.950 – – –
SVM Combined 1.00 / 1.00 / 1.00 0.96 / 0.83 / 0.89 0.945 – – –
KNN Combined 1.00 / 1.00 / 1.00 0.88 / 0.90 / 0.89 0.945 – – –
DNN Combined 1.00 / 1.00 / 1.00 0.92 / 0.98 / 0.95 0.975 – – –
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